Reactive stepping with functional neuromuscular stimulation in response to forward-directed perturbations

J Neuroeng Rehabil. 2017 Jun 10;14(1):54. doi: 10.1186/s12984-017-0266-6.

Abstract

Background: Implanted motor system neuroprostheses can be effective at increasing personal mobility of persons paralyzed by spinal cord injuries. However, currently available neural stimulation systems for standing employ patterns of constant activation and are unreactive to changing postural demands.

Methods: In this work, we developed a closed-loop controller for detecting forward-directed body disturbances and initiating a stabilizing step in a person with spinal cord injury. Forward-directed pulls at the waist were detected with three body-mounted triaxial accelerometers. A finite state machine was designed and tested to trigger a postural response and apply stimulation to appropriate muscles so as to produce a protective step when the simplified jerk signal exceeded predetermined thresholds.

Results: The controller effectively initiated steps for all perturbations with magnitude between 10 and 17.5 s body weight, and initiated a postural response with occasional steps at 5% body weight. For perturbations at 15 and 17.5% body weight, the dynamic responses of the subject exhibited very similar component time periods when compared with able-bodied subjects undergoing similar postural perturbations. Additionally, the reactive step occurred faster for stronger perturbations than for weaker ones (p < .005, unequal varience t-test.) CONCLUSIONS: This research marks progress towards a controller which can improve the safety and independence of persons with spinal cord injury using implanted neuroprostheses for standing.

Keywords: Functional neuromuscular stimulation; Neuroprostheses; Reactive stepping; Spinal cord injury; Standing balance.

MeSH terms

  • Accelerometry
  • Algorithms
  • Biomechanical Phenomena
  • Electric Stimulation*
  • Electrodes, Implanted
  • Humans
  • Male
  • Middle Aged
  • Muscle, Skeletal
  • Neural Prostheses*
  • Paraplegia / rehabilitation
  • Physical Therapy Modalities
  • Postural Balance
  • Spinal Cord Injuries / rehabilitation
  • Walking*