Nitrogen Source Stabilization of Quorum Sensing in the Pseudomonas aeruginosa Bioaugmentation Strain SD-1

Appl Environ Microbiol. 2017 Aug 1;83(16):e00870-17. doi: 10.1128/AEM.00870-17. Print 2017 Aug 15.

Abstract

Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa, PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH4Cl, NaNO3, or NaNO2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH4Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO3 and NaNO2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species.IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we show that bioaugmentation strains of bacteria might also be susceptible to invasion by social cheaters and that the nitrogen sources available in the wastewater might influence the ability of cheaters to overtake the bioaugmentation strains. Our results imply that control over the nitrogen sources in a wastewater stream or selective addition of certain nitrogen sources could help stabilize bioaugmentation strains of bacteria.

Keywords: bioaugmentation; inorganic nitrogen; long-term stabilization; quorum sensing; social cheating.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Biodegradation, Environmental
  • Mutation
  • Nitrogen / metabolism*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / growth & development
  • Pseudomonas aeruginosa / physiology*
  • Quorum Sensing*
  • Wastewater / analysis
  • Wastewater / microbiology
  • Water Pollutants, Chemical / metabolism*
  • Water Purification

Substances

  • Bacterial Proteins
  • Waste Water
  • Water Pollutants, Chemical
  • Nitrogen