Leveraging genomic prediction to scan germplasm collection for crop improvement

PLoS One. 2017 Jun 9;12(6):e0179191. doi: 10.1371/journal.pone.0179191. eCollection 2017.

Abstract

The objective of this study was to explore the potential of genomic prediction (GP) for soybean resistance against Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold (WM). A diverse panel of 465 soybean plant introduction accessions was phenotyped for WM resistance in replicated field and greenhouse tests. All plant accessions were previously genotyped using the SoySNP50K BeadChip. The predictive ability of six GP models were compared, and the impact of marker density and training population size on the predictive ability was investigated. Cross-prediction among environments was tested to determine the effectiveness of the prediction models. GP models had similar prediction accuracies for all experiments. Predictive ability did not improve significantly by using more than 5k SNPs, or by increasing the training population size (from 50% to 90% of the total of individuals). The GP model effectively predicted WM resistance across field and greenhouse experiments when each was used as either the training or validation population. The GP model was able to identify WM-resistant accessions in the USDA soybean germplasm collection that had previously been reported and were not included in the study panel. This study demonstrated the applicability of GP to identify useful genetic sources of WM resistance for soybean breeding. Further research will confirm the applicability of the proposed approach to other complex disease resistance traits and in other crops.

MeSH terms

  • Crops, Agricultural / genetics*
  • Disease Resistance / genetics
  • Genetic Association Studies*
  • Genetic Markers
  • Genetics, Population
  • Genome, Plant*
  • Genomics* / methods
  • Genotype
  • Glycine max / genetics
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Seeds / genetics*

Substances

  • Genetic Markers

Grants and funding

We are thankful to the Iowa State University (ISU), the Iowa Soybean Association, Monsanto Chair in Soybean Breeding at ISU, and the R. F. Baker Center for Plant Breeding at ISU for financial support. The funding agency, CAPES (Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior), supported Leonardo Peixoto through a fellowship under the Ph.D. “sandwich program” at Iowa State University. Tara Moellers was supported by the R. F. Baker Center for Plant Breeding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.