Energy Transfer between Spatially Separated Entangled Molecules

Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9034-9038. doi: 10.1002/anie.201703539. Epub 2017 Jun 28.

Abstract

Light-matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non-radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly coupled to a cavity. The transient dynamics and the static spectra show an energy transfer efficiency approaching 37 % for donor-acceptor distances ≥100 nm. In such systems, the energy transfer process becomes independent of distance as long as the coupling strength is maintained. This is consistent with the entangled and delocalized nature of the polaritonic states.

Keywords: cyanine dyes; non-radiative energy transfer; quantum entanglement; strong coupling.

Publication types

  • Research Support, Non-U.S. Gov't