Tailoring the Adsorption and Reaction Chemistry of the Metal-Organic Frameworks UiO-66, UiO-66-NH2, and HKUST-1 via the Incorporation of Molecular Guests

ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21579-21585. doi: 10.1021/acsami.7b06274. Epub 2017 Jun 19.

Abstract

Metal-organic frameworks (MOFs) are versatile materials highly regarded for their porous nature. Depending on the synthetic method, various guest molecules may remain in the pores or can be systematically loaded for various reasons. Herein, we present a study that explores the effect of guest molecules on the adsorption and reactivity of the MOF in both the gas phase and solution. The differences between guest molecule interactions and the subsequent effects on their activity are described for each system. Interestingly, different effects are observed and described in detail for each class of guest molecules studied. We determine that there is a strong effect of alcohols with the secondary building unit of UiO MOFs, while Lewis bases have an effect on the reactivity of the -NH2 group in UiO-66-NH2 and adsorption by the coordinatively unsaturated copper sites in HKUST-1. These effects must be considered when determining synthesis and activation methods of MOFs toward various applications.

Keywords: adsorption; catalysis; chemical warfare agents; metal−organic frameworks; toxic industrial chemicals.