Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors

PLoS One. 2017 Jun 8;12(6):e0179202. doi: 10.1371/journal.pone.0179202. eCollection 2017.

Abstract

Background: Targeting angiogenesis has been considered a promising treatment of choice for a large number of malignancies, including gastrointestinal cancers. Bevacizumab is an anti-vascular endothelial growth factor (anti-VEGF) being used for this purpose. However, treatment efficacy is largely questioned. Telomerase activity, responsible for cancer cell immortality, is detected in 85-95% of human cancers and is considered a potential regulator of VEGF. The aim of our study was to investigate the interrelationship between VEGF and hTERT in gastrointestinal cancers and to explore cell response to a combined inhibition of telomerase and VEGF.

Methods: AGS (gastric cancer), Caco-2 (colorectal cancer) and HepG2/C3A (hepatocellular carcinoma), were treated with telomerase inhibitors BIBR-1232 (10μM) and costunolide (10μM), with bevacizumab (Avastin® at 5 ng/ml or 100μg/ml) or with a combination of both types of inhibitors. VEGF and hTERT mRNA levels, and telomerase activity were detected by RT-PCR. VEGF levels were quantified by ELISA. Telomerase was knocked down using hTERT siRNA and hTERT was overexpressed in the telomerase negative cell line, Saos-2 (osteosarcoma), using constructs expressing either wild type hTERT (hTERT-WT) or dominant negative hTERT (hTERT-DN). Tube formation by HUVECs was assessed using ECMatrix™ (EMD Millipore).

Results: Our results showed that telomerase regulates VEGF expression and secretion through its catalytic subunit hTERT in AGS, Caco2, and HepG2/C3A, independent of its catalytic activity. Interestingly, VEGF inhibition with bevacizumab (100μg/ml) increased hTERT expression 42.3% in AGS, 94.1% in Caco2, and 52.5% in HepG2/C3A, and increased telomerase activity 30-fold in AGS, 10.3-fold in Caco2 and 8-fold in HepG2/C3A. A further investigation showed that VEGF upregulates hTERT expression in a mechanism that implicates the PI3K/AKT/mTOR pathway and HIF-1α. Moreover, bevacizumab treatment increased VEGFR1 and VEGFR2 expression in cancer cells and human umbilical vein endothelial cells (HUVECs) through hTERT. Thus, the combination of bevacizumab with telomerase inhibitors decreased VEGF expression and secretion by cancer cells, inhibited VEGFR1 and VEGFR2 upregulation, and reduced tube formation by HUVECs.

Conclusions: Taken together, our results suggest that bevacizumab treatment activates a VEGF autoregulatory mechanism involving hTERT and VEGF receptors and that an inhibition of this pathway could improve tumor cell response to anti-VEGF treatment.

MeSH terms

  • Bevacizumab / pharmacology
  • Bevacizumab / therapeutic use*
  • Catalytic Domain
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Gastrointestinal Neoplasms / drug therapy*
  • Gastrointestinal Neoplasms / metabolism
  • Homeostasis / drug effects
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Neovascularization, Physiologic / drug effects
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Receptors, Vascular Endothelial Growth Factor / metabolism*
  • Telomerase / metabolism*
  • Vascular Endothelial Growth Factor A / antagonists & inhibitors
  • Vascular Endothelial Growth Factor A / metabolism*

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Vascular Endothelial Growth Factor A
  • Bevacizumab
  • Phosphatidylinositol 3-Kinases
  • Receptors, Vascular Endothelial Growth Factor
  • Proto-Oncogene Proteins c-akt
  • TERT protein, human
  • Telomerase

Grants and funding

This work was supported by the Research Council of Saint-Joseph University and the Lebanese National Council for Scientific Research (CNRS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.