Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies

Sci Rep. 2017 Jun 7;7(1):2988. doi: 10.1038/s41598-017-03208-8.

Abstract

Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1-43 or 44-65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44-65 restored the immunoreactivity of mAbs whose epitope being within residues 44-65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / isolation & purification
  • Antibodies, Monoclonal / metabolism*
  • Apolipoprotein A-I / chemistry*
  • Apolipoprotein A-I / metabolism*
  • Humans
  • Lipoproteins, HDL / metabolism*
  • Mice, Inbred BALB C
  • Protein Binding
  • Protein Conformation

Substances

  • Antibodies, Monoclonal
  • Apolipoprotein A-I
  • Lipoproteins, HDL