Growth of low doped monolayer graphene on SiC(0001) via sublimation at low argon pressure

Phys Chem Chem Phys. 2017 Jun 21;19(24):15833-15841. doi: 10.1039/c7cp01012e.

Abstract

Silicon carbide (SiC) sublimation is the most promising option to achieve transfer-free graphene at the wafer-scale. We investigated the initial growth stages from the buffer layer to monolayer graphene on SiC(0001) as a function of annealing temperature at low argon pressure (10 mbar). A buffer layer, fully covering the SiC substrate, forms when the substrate is annealed at 1600 °C. Graphene formation starts from the step edges of the SiC substrate at higher temperature (1700 °C). The spatial homogeneity of the monolayer graphene was observed at 1750 °C, as characterized by Raman spectroscopy and magneto-transport. Raman spectroscopy mapping indicated an AG-graphene/AG-HOPG ratio of around 3.3%, which is very close to the experimental value reported for a graphene monolayer. Transport measurements from room temperature down to 1.7 K indicated slightly p-doped samples (p ≃ 1010 cm-2) and confirmed both continuity and thickness of the monolayer graphene film. Successive growth processes have confirmed the reproducibility and homogeneity of these monolayer films.