LXR-dependent regulation of macrophage-specific reverse cholesterol transport is impaired in a model of genetic diabesity

Transl Res. 2017 Aug:186:19-35.e5. doi: 10.1016/j.trsl.2017.05.004. Epub 2017 May 18.

Abstract

Diabesity and fatty liver have been associated with low levels of high-density lipoprotein cholesterol, and thus could impair macrophage-specific reverse cholesterol transport (m-RCT). Liver X receptor (LXR) plays a critical role in m-RCT. Abcg5/g8 sterol transporters, which are involved in cholesterol trafficking into bile, as well as other LXR targets, could be compromised in the livers of obese individuals. We aimed to determine m-RCT dynamics in a mouse model of diabesity, the db/db mice. These obese mice displayed a significant retention of macrophage-derived cholesterol in the liver and reduced fecal cholesterol elimination compared with nonobese mice. This was associated with a significant downregulation of the hepatic LXR targets, including Abcg5/g8. Pharmacologic induction of LXR promoted the delivery of total tracer output into feces in db/db mice, partly due to increased liver and small intestine Abcg5/Abcg8 gene expression. Notably, a favorable upregulation of the hepatic levels of ABCG5/G8 and NR1H3 was also observed postoperatively in morbidly obese patients, suggesting a similar LXR impairment in these patients. In conclusion, our data show that downregulation of the LXR axis impairs cholesterol transfer from macrophages to feces in db/db mice, whereas the induction of the LXR axis partly restores impaired m-RCT by elevating the liver and small intestine expressions of Abcg5/g8.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 5 / genetics
  • ATP Binding Cassette Transporter, Subfamily G, Member 5 / metabolism
  • ATP Binding Cassette Transporter, Subfamily G, Member 8 / genetics
  • ATP Binding Cassette Transporter, Subfamily G, Member 8 / metabolism
  • Animals
  • Biological Transport
  • Cholesterol / metabolism*
  • Diabetes Mellitus / genetics*
  • Diabetes Mellitus / metabolism*
  • Lipoproteins / genetics
  • Lipoproteins / metabolism
  • Liver X Receptors / genetics
  • Liver X Receptors / metabolism*
  • Macrophages / metabolism*
  • Male
  • Mice
  • Obesity
  • Signal Transduction
  • Up-Regulation

Substances

  • ABCG5 protein, mouse
  • ABCG8 protein, mouse
  • ATP Binding Cassette Transporter, Subfamily G, Member 5
  • ATP Binding Cassette Transporter, Subfamily G, Member 8
  • Lipoproteins
  • Liver X Receptors
  • Cholesterol