Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks

Biosens Bioelectron. 2017 Nov 15:97:107-114. doi: 10.1016/j.bios.2017.05.011. Epub 2017 May 5.

Abstract

A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy)3]2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO2/ITO electrode through the chelation between the Zr4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy)3]2+ adsorbed in the pores of UiO-66 injected into the TiO2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy)3]2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL-1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries.

Keywords: Kinase; Metal-organic frameworks; Photoelectrochemical biosensor; Signal amplification; Surface defect recognition.

MeSH terms

  • Animals
  • Biosensing Techniques / instrumentation
  • Biosensing Techniques / methods*
  • Cattle
  • Cyclic AMP-Dependent Protein Kinases / analysis
  • Cyclic AMP-Dependent Protein Kinases / antagonists & inhibitors
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Electrochemical Techniques / instrumentation
  • Electrochemical Techniques / methods*
  • Electrodes
  • Enzyme Assays / instrumentation
  • Enzyme Assays / methods*
  • Equipment Design
  • Humans
  • Limit of Detection
  • MCF-7 Cells
  • Metal-Organic Frameworks / chemistry*
  • Oligopeptides / chemistry
  • Ruthenium / chemistry
  • Zirconium / chemistry*

Substances

  • Metal-Organic Frameworks
  • Oligopeptides
  • kemptide
  • Ruthenium
  • Zirconium
  • Cyclic AMP-Dependent Protein Kinases