Damage accumulation of bovine bone under variable amplitude loads

Bone Rep. 2016 Nov 11:5:320-332. doi: 10.1016/j.bonr.2016.11.001. eCollection 2016 Dec.

Abstract

Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μϵ), brittle due to high cyclic amplitude loading (> 9000 μϵ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μϵ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.

Keywords: Bone fatigue; Bone fracture; Failure prediction; Health system monitoring.