Calcium l-Lactate Frameworks as Naturally Degradable Carriers for Pesticides

J Am Chem Soc. 2017 Jun 21;139(24):8118-8121. doi: 10.1021/jacs.7b04542. Epub 2017 Jun 13.

Abstract

Two porous, chiral metal-organic frameworks (MOFs), Ca14(l-lactate)20(acetate)8(C2H5OH)(H2O) (MOF-1201) and Ca6(l-lactate)3(acetate)9(H2O) (MOF-1203), are constructed from Ca2+ ions and l-lactate [CH3CH(OH)COO-], where Ca2+ ions are bridged by the carboxylate and hydroxyl groups of lactate and the carboxylate group of acetate to give a three-dimensional arrangement of Ca(-COO, -OH) polyhedra supporting one-dimensional pores with apertures and internal diameters of 7.8 and 9.6 Å (MOF-1201) and 4.6 and 5.6 Å (MOF-1203), respectively. These MOFs represent the first examples of extended porous structures based on Ca2+ and lactate. They show permanent porosity of 430 and 160 m2 g-1, respectively, and can encapsulate an agriculturally important fumigant, cis-1,3-dichloropropene. MOF-1201 shows a 100 times lower release rate compared with liquid cis-1,3-dichloropropene under the same test conditions (25 °C, air flow rate of 1 cm3 min-1). The hydrolysis of MOF-1201 in water makes it the first example of a degradable porous solid carrier for such fumigants.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calcium Compounds / chemistry*
  • Lactates / chemistry*
  • Metal-Organic Frameworks / chemistry*
  • Models, Molecular
  • Particle Size
  • Pesticides / chemistry*
  • Porosity
  • Surface Properties

Substances

  • Calcium Compounds
  • Lactates
  • Metal-Organic Frameworks
  • Pesticides
  • calcium lactate