fMRI Mapping of Brain Activity Associated with the Vocal Production of Consonant and Dissonant Intervals

J Vis Exp. 2017 May 23:(123):55419. doi: 10.3791/55419.

Abstract

The neural correlates of consonance and dissonance perception have been widely studied, but not the neural correlates of consonance and dissonance production. The most straightforward manner of musical production is singing, but, from an imaging perspective, it still presents more challenges than listening because it involves motor activity. The accurate singing of musical intervals requires integration between auditory feedback processing and vocal motor control in order to correctly produce each note. This protocol presents a method that permits the monitoring of neural activations associated with the vocal production of consonant and dissonant intervals. Four musical intervals, two consonant and two dissonant, are used as stimuli, both for an auditory discrimination test and a task that involves first listening to and then reproducing given intervals. Participants, all female vocal students at the conservatory level, were studied using functional Magnetic Resonance Imaging (fMRI) during the performance of the singing task, with the listening task serving as a control condition. In this manner, the activity of both the motor and auditory systems was observed, and a measure of vocal accuracy during the singing task was also obtained. Thus, the protocol can also be used to track activations associated with singing different types of intervals or with singing the required notes more accurately. The results indicate that singing dissonant intervals requires greater participation of the neural mechanisms responsible for the integration of external feedback from the auditory and sensorimotor systems than does singing consonant intervals.

Publication types

  • Video-Audio Media

MeSH terms

  • Auditory Perception
  • Brain Mapping*
  • Feedback, Sensory
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Research Design
  • Singing*