Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform

ACS Synth Biol. 2017 Sep 15;6(9):1701-1709. doi: 10.1021/acssynbio.7b00007. Epub 2017 Jun 7.

Abstract

Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg-1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm-1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

Keywords: digital microfluidics; droplet; electroporation; transformation.

MeSH terms

  • Electroporation / instrumentation*
  • Equipment Design
  • Equipment Failure Analysis
  • Escherichia coli / genetics*
  • Lab-On-A-Chip Devices*
  • Microelectrodes
  • Robotics / instrumentation*
  • Signal Processing, Computer-Assisted / instrumentation
  • Transfection / instrumentation*
  • Transformation, Bacterial / genetics*