Facile Synthesis of Heterostructured WS2/Bi2MoO6 as High-Performance Visible-Light-Driven Photocatalysts

Nanoscale Res Lett. 2017 Dec;12(1):377. doi: 10.1186/s11671-017-2157-y. Epub 2017 May 30.

Abstract

In this paper, novel WS2/Bi2MoO6 heterostructured photocatalysts were successfully fabricated via a facile solvothermal growth method using pre-exfoliated layered WS2 nanoslices as a substrate. The structure, morphology, and optical properties of the as-prepared WS2/Bi2MoO6 samples were characterized by XRD, XPS, SEM, TEM (HRTEM), and UV-vis diffuse reflectance spectra (DRS). Results confirmed the existence of an excellent nanojunction interface between layered WS2 nanoslices and Bi2MoO6 nanoflakes. Under visible light (>420 nm), the WS2/Bi2MoO6 composites exhibit significantly enhanced photocatalytic activity compared with pure Bi2MoO6 toward the decomposition of rhodamine B (RhB). Meanwhile, the active species trapping experiments indicated that holes (h+) were the main active species during the photocatalytic reaction. The enhanced photocatalytic performance can be ascribed to the effective light harvesting, fast photogenerated electron-hole pairs separation, and excellent charge carrier transport of the WS2/Bi2MoO6 heterostructures. Moreover, the prepared WS2/Bi2MoO6 composites also show good structural and activity stability in repeatability experiments.

Keywords: Heterostructure; Photocatalysis; Solvothermal; Visible-light driven; WS2/Bi2MoO6.