THE EVOLVING GENETIC HISTORY OF A POPULATION OF LATHYRUS SYLVESTRIS: EVIDENCE FROM TEMPORAL AND SPATIAL GENETIC STRUCTURE

Evolution. 1996 Oct;50(5):1808-1821. doi: 10.1111/j.1558-5646.1996.tb03567.x.

Abstract

We analyze patterns of genetic microdifferentiation within a natural population of Lathyrus sylvestris, a perennial herb with both sexual reproduction and clonal growth. In a population from the northern foothills of the Pyrénées in southwestern France, a combined demographic and genetic investigation enabled the study not only of spatial genetic structure of the population, but also of the history of the population's spatial genetic structure over time. Excavation of all individuals allowed identification of clonemates. Age of each individual was determined by counting annual growth rings in the taproot, a method tested with individuals of known age planted in experimental gardens. Each individual was mapped, and genotypes of all individuals were determined using allozyme markers for a number of polymorphic loci. Distribution patterns and spatial genetic structure, both for all individuals and for different age classes, were analyzed using spatial autocorrelation statistics (Geary's Index, Moran's Index). Patterns of gene flow within the population were also studied using F-statistics and tests for random associations of alleles. Because age, allele frequencies, and location were known for each individual, it was possible to study how spatial genetic structure changed over time. Results from all these diverse approaches are consistent with one another, and clearly show the following: (1) founder effects, with the study transect being first colonized by individuals at either end of the transect that were homozygous for different alleles at one marker locus; (2) a difference in spatial distribution of individuals originated from sexual reproduction (seedlings) and from clonal growth (connected individuals); (3) restricted gene flow, due to inbreeding among related, clumped individuals; and (4) increase in heterozygote deficit within the youngest cohort of individuals. The results indicate that genetic differentiation in time was much less marked than differentiation in space. Nevertheless, the results revealed that the studied population is experiencing demographic and genetic variation in time, suggesting that it is not at equilibrium. On the one hand, spatial structuring is becoming less marked due to the recombination of founder genotypes; on the other hand, as establishment of new individuals increases, a new spatial structure emerges due to mating between relatives.

Keywords: Founder effect; Lathyrus; Leguminosae; Moran's Index; gene flow; population substructuring; spatial autocorrelation; temporal variation.