Far-Zone Resonant Energy Transfer in X-ray Photoemission as a Structure Determination Tool

J Phys Chem Lett. 2017 Jun 15;8(12):2730-2734. doi: 10.1021/acs.jpclett.7b00835. Epub 2017 Jun 7.

Abstract

Near-zone Förster resonant energy transfer is the main effect responsible for excitation energy flow in the optical region and is frequently used to obtain structural information. In the hard X-ray region, the Förster law is inadequate because the wavelength is generally shorter than the distance between donors and acceptors; hence, far-zone resonant energy transfer (FZRET) becomes dominant. We demonstrate the characteristics of X-ray FZRET and its fundamental differences with the ordinary near-zone resonant energy-transfer process in the optical region by recording and analyzing two qualitatively different systems: high-density CuO polycrystalline powder and SF6 diluted gas. We suggest a method to estimate geometrical structure using X-ray FZRET employing as a ruler the distance-dependent shift of the acceptor core ionization potential induced by the Coulomb field of the core-ionized donor.