Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries

ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20603-20612. doi: 10.1021/acsami.7b04483. Epub 2017 Jun 9.

Abstract

Tuned chalcogenide single crystals rooted in sulfur-doped graphene were prepared by high-temperature solution chemistry. We present a facile route to synthesize a rod-on-sheet-like nanohybrid as an active anode material and demonstrate its superior performance in lithium ion batteries (LIBs). This nanohybrid contains a nanoassembly of one-dimensional (1D) single-crystalline, orthorhombic SnS onto two-dimensional (2D) sulfur-doped graphene. The 1D nanoscaled SnS with the rodlike single-crystalline structure possesses improved transport properties compared to its 2D hexagonal platelike SnS2. Furthermore, we blend this hybrid chalcogenide with biodegradable polymer composite using water as a solvent. Upon drying, the electrodes were subjected to heating in vacuum at 150 °C to induce polymer condensation via formation of carboxylate groups to produce a mechanically robust anode. The LIB using the as-developed anode material can deliver a high volumetric capacity of ∼2350 mA h cm-3 and exhibit superior cycle stability over 1500 cycles as well as a high capacity retention of 85% at a 1 C rate. The excellent battery performance combined with the simplistic, scalable, and green chemistry approach renders this anode material as a very promising candidate for LIB applications.

Keywords: DFT calculation; chalcogenides; high-temperature solution chemistry; lithium ion batteries; polymer condensation.