Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy

Mol Cell. 2017 Jun 1;66(5):684-697.e9. doi: 10.1016/j.molcel.2017.04.026. Epub 2017 May 25.

Abstract

Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development.

Keywords: ACSS2; AMPK; TFEB; acetyl-CoA; autophagy; lysosomal biogenesis; nucleus; tumor development.

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Acetate-CoA Ligase / genetics
  • Acetate-CoA Ligase / metabolism*
  • Acetyl Coenzyme A / metabolism
  • Acetylation
  • Active Transport, Cell Nucleus
  • Animals
  • Autophagy*
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors / genetics
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors / metabolism
  • Binding Sites
  • Brain Neoplasms / enzymology*
  • Brain Neoplasms / genetics
  • Brain Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Nucleus / enzymology*
  • Cell Nucleus / pathology
  • Cell Survival
  • Energy Metabolism
  • Gene Expression Regulation, Neoplastic
  • Glioblastoma / enzymology*
  • Glioblastoma / genetics
  • Glioblastoma / pathology
  • Histones / metabolism*
  • Humans
  • Lysosomes / metabolism*
  • Male
  • Mice, Inbred BALB C
  • Mice, Nude
  • Organelle Biogenesis*
  • Phosphorylation
  • Promoter Regions, Genetic
  • Protein Binding
  • Protein Processing, Post-Translational
  • RNA Interference
  • Stress, Physiological
  • Transcription, Genetic*
  • Transfection
  • alpha Karyopherins / genetics
  • alpha Karyopherins / metabolism

Substances

  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
  • Histones
  • KPNA1 protein, human
  • TFEB protein, human
  • alpha Karyopherins
  • Acetyl Coenzyme A
  • AMP-Activated Protein Kinases
  • ACSS2 protein, human
  • Acetate-CoA Ligase