Spirometry-Assisted High Resolution Chest Computed Tomography in Children: Is it Worth the Effort?

Curr Probl Diagn Radiol. 2018 Jan-Feb;47(1):14-18. doi: 10.1067/j.cpradiol.2017.02.010. Epub 2017 Apr 7.

Abstract

Background: Image quality of high resolution chest computed tomographies (HRCTs) depends on adequate breath holds at end inspiration and end expiration. We hypothesized that implementation of spirometry-assisted breath holds in children undergoing HRCTs would improve image quality over that obtained with voluntary breath holds by decreasing motion artifact and atelectasis.

Methods: This is a retrospective case-control study of HRCTs obtained at a tertiary care children's hospital before and after implementation of a spirometry-assisted CT protocol, in which children ≥8 years of age are first trained in supine slow vital capacity maneuvers and then repeat the maneuvers in the CT scanner, coached by a respiratory therapist. Spirometry-assisted CT scans (cases) were matched by age, gender and diagnosis (cystic fibrosis vs other) to CT scans obtained with voluntary breath holds in the 6 years before implementation of the spirometry assistance protocol (controls), and evaluated by 2 blinded pediatric radiologists.

Results: Among both cases and controls (N = 50 each), 10 carried the diagnosis of cystic fibrosis and 40 had other diagnoses. Mean age was 12.9 years (range: 7.5-20.1) among cases and 13.0 (7.1-19.7) among controls. Mean (SD) inspiratory image density among cases was -852 (37) Hounsfield units (HU) and -828 (43) among controls (p = 0.006). Mean (SD) expiratory image density was -629 (95) HU among cases and -688 (83) HU among controls (p = 0.002). Mean (SD) change in image density between inspiratory and expiratory images was +222 (85) HU among cases and +140 (76) HU among controls (p < 0.001). Motion artifact was present on inspiratory images in 5 cases and 9 controls (p = 0.39 by Fisher's exact test), and on expiratory images in 20 cases and 18 controls (p > 0.80). Atelectasis was present on inspiratory images in 8 cases and 9 controls and on expiratory images in 9 cases and 10 controls (p > 0.80).

Conclusions: Spirometry-assisted CTs had a significantly greater difference in lung density between inspiratory and expiratory scans than those performed with voluntary breath holds, likely improving the ability to detect air trapping. No appreciable difference in image quality was detected for the presence of motion artifact or atelectasis.

MeSH terms

  • Case-Control Studies
  • Child
  • Female
  • Humans
  • Male
  • Radiography, Thoracic / methods*
  • Respiratory Tract Diseases / diagnostic imaging*
  • Respiratory-Gated Imaging Techniques / methods*
  • Retrospective Studies
  • Spirometry*
  • Tomography, X-Ray Computed / methods*
  • Washington