Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux

ACS Appl Mater Interfaces. 2017 Jun 14;9(23):19917-19924. doi: 10.1021/acsami.7b04685. Epub 2017 Jun 5.

Abstract

The dual-phase membrane has received much attention as the solution to the instability of the oxygen permeation membrane. It has been reported that the oxygen flux of the dual-phase membrane is greatly enhanced by the active coating layer. However, there has been little discussion about the enhancement mechanism by surface coating in the dual-phase membrane. This study investigates the oxygen flux of the Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC 80 vol %/LSM 20 vol %) composite membrane depending on the oxygen partial pressure (PO2) to elucidate the mechanism of enhanced oxygen flux by the surface modification in the fluorite-rich phase dual-phase membrane. The oxygen permeation resistances were obtained from the oxygen flux as a function of PO2 using the oxygen permeation model. The surface exchange coefficient (k) and the bulk diffusion coefficient (D) were calculated from these resistances. According to the calculated k and D values, we concluded that the active coating layer (La0.6Sr0.4CoO3-δ) significantly increased the k value of the membrane. Furthermore, the surface exchange reaction on the permeate side was more sluggish than that at the feed side under operating conditions (feed: 0.21 atm/permeate side: 4.7 × 10-4 atm). Therefore, the enhancement of the oxygen surface exchange kinetics at the permeate side is more important in improving the oxygen permeation flux of the thin film-based fluorite-rich dual-phase membrane. These results provide new insight about the function of the surface coating to enhance the oxygen permeation flux of the dual-phase membrane.

Keywords: bulk diffusion; dual-phase membrane; oxygen permeation; permeation model; surface exchange kinetics.