Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles

J Air Waste Manag Assoc. 2017 Nov;67(11):1229-1239. doi: 10.1080/10962247.2017.1330713.

Abstract

Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations.

Implications: The paper provides emission factors (EFs) that are a function of traffic volume and mode of operation (free flow and congestion) for LDVs under real-world conditions. The good agreement between monitoring and modeling results indicates that high-resolution, simultaneous measurements of air quality and meteorological and traffic conditions can be used to determine real-world, fleet-wide vehicle EFs as a function of vehicle mode of operation under actual driving conditions.

Publication types

  • Comparative Study

MeSH terms

  • Air Pollutants / analysis*
  • Carbon Dioxide / analysis
  • Carbon Monoxide / analysis
  • Chicago
  • Environmental Monitoring / methods
  • Humans
  • Models, Chemical
  • Particulate Matter / analysis*
  • Vehicle Emissions / analysis*
  • Wind

Substances

  • Air Pollutants
  • Particulate Matter
  • Vehicle Emissions
  • Carbon Dioxide
  • Carbon Monoxide