CRISPR/Cas9-mediated correction of human genetic disease

Sci China Life Sci. 2017 May;60(5):447-457. doi: 10.1007/s11427-017-9032-4. Epub 2017 May 3.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system (CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs, this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity, and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings. Taking advantage of non-homologous end-joining (NHEJ) and homology directed repair (HDR)-mediated DNA repair, several studies have recently reported the use of CRISPR/Cas9 to successfully correct disease-causing alleles ranging from single base mutations to large insertions. In this review, we summarize and discuss recent preclinical studies involving the CRISPR/Cas9-mediated correction of human genetic diseases.

Keywords: CRISPR/Cas9; gene therapy; genetic disease; genome editing.

Publication types

  • Review

MeSH terms

  • CRISPR-Cas Systems*
  • DNA Repair
  • Gene Editing / methods*
  • Gene Transfer Techniques
  • Genetic Diseases, Inborn / genetics*
  • Genetic Diseases, Inborn / therapy*
  • Humans
  • Mutation