Effects of temperature, salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus carpenteri isolated from the Great Barrier Reef

Harmful Algae. 2017 May:65:52-60. doi: 10.1016/j.hal.2017.04.006. Epub 2017 Apr 22.

Abstract

Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34°C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28°C compared to strain NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.

Keywords: Ciguatera; Climate change; Coral bleaching; Environmental drivers; Ostreopsis; Prorocentrum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Australia
  • Ciguatera Poisoning
  • Climate Change
  • Coral Reefs
  • Dinoflagellida / growth & development*
  • Harmful Algal Bloom
  • Salinity
  • Temperature