Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT

J Vis Exp. 2017 May 2:(123):55184. doi: 10.3791/55184.

Abstract

This paper describes the use of 18F-FDG and micro-PET/CT imaging to determine in vivo glucose metabolism kinetics in mice (and is transferable to rats). Impaired uptake and metabolism of glucose in multiple organ systems due to insulin resistance is a hallmark of type 2 diabetes. The ability of this technique to extract an image-derived input function from the vena cava using an iterative deconvolution method eliminates the requirement of the collection of arterial blood samples. Fitting of tissue and vena cava time activity curves to a two-tissue, three compartment model permits the estimation of kinetic micro-parameters related to the 18F-FDG uptake from the plasma to the intracellular space, the rate of transport from intracellular space to plasma and the rate of 18F-FDG phosphorylation. This methodology allows for multiple measures of glucose uptake and metabolism kinetics in the context of longitudinal studies and also provides insights into the efficacy of therapeutic interventions.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Fluorodeoxyglucose F18 / chemistry*
  • Glucose / analysis*
  • Glucose / pharmacokinetics
  • Image Processing, Computer-Assisted
  • Insulin Resistance
  • Kinetics
  • Male
  • Mice
  • Mice, Inbred Strains
  • Muscle, Skeletal / metabolism
  • Phosphorylation
  • Positron Emission Tomography Computed Tomography
  • Radiopharmaceuticals / chemistry*
  • Venae Cavae

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18
  • Glucose