Remote Sensing Evaluation of Two-spotted Spider Mite Damage on Greenhouse Cotton

J Vis Exp. 2017 Apr 28:(122):54314. doi: 10.3791/54314.

Abstract

The objective of this study was to evaluate a ground-based multispectral optical sensor as a remote sensing tool to assess foliar damage caused by the two-spotted spider mite (TSSM), Tetranychus urticae Koch, on greenhouse grown cotton. TSSM is a polyphagous pest which occurs on a variety of field and horticultural crops. It often becomes an early season pest of cotton in damaging proportions as opposed to being a late season innocuous pest in the mid-southern United States. Evaluation of acaricides is important for maintaining the efficacy of and preventing resistance to the currently available arsenal of chemicals and newly developed control agents. Enumeration of spider mites for efficacy evaluations is laborious and time consuming. Therefore, subjective visual damage rating is commonly used to assess density of spider mites. The NDVI (Normalized Difference Vegetation Index) is the most widely used statistic to describe the spectral reflectance characteristics of vegetation canopy to assess plant stress and health consequent to spider mite infestations. Results demonstrated that a multispectral optical sensor is an effective tool in distinguishing varying levels of infestation caused by T. urticae on early season cotton. This remote sensing technique may be used in lieu of a visual rating to evaluate insecticide treatments.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Gossypium / parasitology*
  • Population Density
  • Remote Sensing Technology*
  • Seasons
  • Tetranychidae*