Molecular cloning and characterization of a thioredoxin from Taiwanofungus camphorata

Bot Stud. 2014 Dec;55(1):77. doi: 10.1186/s40529-014-0077-z. Epub 2014 Dec 4.

Abstract

Background: Thioredoxin (Trx) is reduced by thioredoxin reductase. Trx is used in ribonucleoide reduction, assimilatory sulfate reduction, in modulation of protein sulfhydryl groups, and refolding proteins.

Results: A TcTrx (Tc: Taiwanofungus camphorata) cDNA (640 bp, GenBank AY838902.1) encoding a putative thioredoxin (Trx) of 135 amino acid residues with calculated molecular mass of 16.17 kDa was cloned from Taiwanofungus c amphorata. The deduced amino acid sequence containing a motif (Cys-Gly-Pro-Cys) that is highly conserved among the reported Trxs. A three dimensional structural model of the TcTrx has been created based on the known structure of Malassezia sympodialis Trx (MsTrx, PDB ID: 2j23). To characterize the TcTrx, the codon optimized coding region was subcloned into an expression vector and transformed into Saccharomyces cerevisiae. The recombinant His8-tagged TcTrx was expressed and purified by Ni affinity chromatography. The purified enzyme showed a band of approximately 32 kDa (expected dimeric form) on a 12% SDS-PAGE. The molecular mass determined by MALDI-TOF is 33.16 kDa which suggests that the purified enzyme is a dimeric enzyme. Furthermore, the enzyme exhibited TcTrx activity via insulin assay. The Michaelis constant (K M ) value for insulin was 3.78 × 10-2 mM. The enzyme's half-life of deactivation was 13 min at 45°C. The enzyme was most active at pH 7.

Conclusions: A three dimensional structural model of T. camphorata Trx based on its TcTrx cDNA sequence. The active form of the TcTrx has been successfully expressed in yeast. The enzyme possesses Trx activity and is capable of reduction of disulfide bonds during the formation of newly synthesized proteins.

Keywords: Insulin; Taiwanofungus camphorata; Thioredoxin (Trx); Three-dimension structural model.