The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity

Biophys Rev. 2016 Nov;8(Suppl 1):5-22. doi: 10.1007/s12551-016-0237-3. Epub 2016 Nov 19.

Abstract

We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.

Keywords: Chromatin organization; DNA supercoiling; DNA translocases; DNA untwisting; DNA writhing; Superhelicity gradients.

Publication types

  • Review