Evaluation of Energy Balance on Human Telomerase Reverse Transcriptase (hTERT) Alternative Splicing by Semi-quantitative RT-PCR in Human Umbilical Vein Endothelial Cells

Adv Biomed Res. 2017 Apr 17:6:43. doi: 10.4103/2277-9175.204591. eCollection 2017.

Abstract

Background: Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis.

Materials and methods: Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured.

Results: ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels (P = 0.09) and vWF (P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue.

Conclusions: The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.

Keywords: ATP depletion; endothelial cell dysfunction; telomerase; telomere.