Quaternary ammonium salts substituted by 5-phenyl-1,3,4-oxadiazole-2-thiol as novel antibacterial agents with low cytotoxicity

Chem Biol Drug Des. 2017 Nov;90(5):943-952. doi: 10.1111/cbdd.13020. Epub 2017 Jun 15.

Abstract

Twenty-one novel 5-phenyl-1,3,4-oxadiazole-2-thiol (POT) substituted N-hydroxyethyl quaternary ammonium salts (6a-g, 7a-g, 8a-g) were prepared and characterized by FTIR, NMR, and elemental analysis. Compounds 6a, 6c, and 8a were confirmed by X-ray single-crystal diffraction. They display the unsurpassed antibacterial activity against Staphylococcus aureus, α-H-tococcus, Escherichia coli, P. aeruginosa, Proteus vulgaris, Canidia Albicans, especially 6g, 7g, 8g with dodecyl group. Compounds 8a-d with N,N-dihydroxyethyl and POT groups display unsurpassed antibacterial activity and non-toxicity. The structure-activity relationships indicate that POT and flexible dihydroxyethyl group in QAS are necessary for antibacterial activity and cytotoxicity. SEM and TEM images of E. coli morphologies of 8d show the antibacterial agents can adhere to membrane surfaces to inhibit bacterial growth by disrupting peptidoglycan formation and releasing bacterial cytoplasm from cell membranes.

Keywords: 5-phenyl-1,3,4-oxadiazole-2-thiol; SEM and TEM; antibacterial agents; non-toxicity; quaternary ammonium salt.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Bacteria / drug effects*
  • Bacterial Infections / drug therapy
  • Escherichia coli / drug effects
  • Humans
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Oxadiazoles / chemistry
  • Oxadiazoles / pharmacology*
  • Proteus vulgaris / drug effects
  • Quaternary Ammonium Compounds / chemistry
  • Quaternary Ammonium Compounds / pharmacology*
  • Staphylococcus aureus / drug effects
  • Structure-Activity Relationship

Substances

  • 5-phenyl-1,3,4-oxadiazole-2-thiol
  • Anti-Bacterial Agents
  • Oxadiazoles
  • Quaternary Ammonium Compounds