Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis

Elife. 2017 May 12:6:e23471. doi: 10.7554/eLife.23471.

Abstract

The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the β-basket of the substrate binding domain.

Keywords: biophysics; computational biology; heat shock protein; molecular modeling; none; protein coevolution; protein complex; structural biology; systems biology; transient interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • HSP40 Heat-Shock Proteins / chemistry*
  • HSP40 Heat-Shock Proteins / genetics
  • HSP40 Heat-Shock Proteins / metabolism*
  • HSP70 Heat-Shock Proteins / chemistry*
  • HSP70 Heat-Shock Proteins / genetics
  • HSP70 Heat-Shock Proteins / metabolism*
  • Molecular Dynamics Simulation
  • Protein Binding
  • Protein Interaction Maps*
  • Sequence Analysis

Substances

  • DnaJ protein, E coli
  • Escherichia coli Proteins
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • dnaK protein, E coli

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.