Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects

Biomed Res Int. 2017:2017:8943850. doi: 10.1155/2017/8943850. Epub 2017 Apr 11.

Abstract

The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS), median frequency (MDF), and sample entropy (SampEn), were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p < 0.001) but not for MDF and SampEn (both p > 0.05). In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p < 0.001) and MDF and SampEn were significantly smaller (all p < 0.001).

Publication types

  • Clinical Trial

MeSH terms

  • Adult
  • Arm*
  • Electromyography*
  • Humans
  • Magnetic Field Therapy*
  • Male
  • Muscle Fatigue*
  • Muscle Strength*