Direct Laser Writing of Magneto-Photonic Sub-Microstructures for Prospective Applications in Biomedical Engineering

Nanomaterials (Basel). 2017 May 9;7(5):105. doi: 10.3390/nano7050105.

Abstract

We report on the fabrication of desired magneto-photonic devices by a low one-photon absorption (LOPA) direct laser writing (DLW) technique on a photocurable nanocomposite consisting of magnetite ( Fe 3 O 4 ) nanoparticles and a commercial SU-8 photoresist. The magnetic nanocomposite was synthesized by mixing Fe 3 O 4 nanoparticles with different kinds of SU-8 photoresists. We demonstrated that the degree of dispersion of Fe 3 O 4 nanoparticles in the nanocomposite depended on the concentration of Fe 3 O 4 nanoparticles, the viscosity of SU-8 resist, and the mixing time. By tuning these parameters, the most homogeneous magnetic nanocomposite was obtained with a concentration of about 2 wt % of Fe 3 O 4 nanoparticles in SU-8 2005 photoresist for the mixing time of 20 days. The LOPA-based DLW technique was employed to fabricate on demand various magneto-photonic submicrometer structures, which are similar to those obtained without Fe 3 O 4 nanoparticles. The magneto-photonic 2D and 3D structures with sizes as small as 150 nm were created. We demonstrated the strong magnetic field responses of the magneto-photonic nanostructures and their use as micro-actuators when immersed in a liquid solution.

Keywords: magnetic nanocomposite; magneto-photonic microstructures; one-photon absorption direct laser writing.