Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa

J Am Chem Soc. 2017 May 24;139(20):6795-6798. doi: 10.1021/jacs.7b01626. Epub 2017 May 10.

Abstract

The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the β-lactam resistance enzyme, β-lactamase. The enzyme catalyzes hydrolysis of N-acetyl-β-d-glucosamine-(1→4)-1,6-anhydro-N-acetyl-β-d-muramyl-peptide (1) to N-acetyl-β-d-glucosamine (2) and 1,6-anhydro-N-acetyl-β-d-muramyl-peptide (3). The structural and functional aspects of catalysis by NagZ were investigated by a total of seven X-ray structures, three computational models based on the X-ray structures, molecular-dynamics simulations and mutagenesis. The structural insights came from the unbound state and complexes of NagZ with the substrate, products and a mimetic of the transient oxocarbenium species, which were prepared by synthesis. The mechanism involves a histidine as acid/base catalyst, which is unique for glycosidases. The turnover process utilizes covalent modification of D244, requiring two transition-state species and is regulated by coordination with a zinc ion. The analysis provides a seamless continuum for the catalytic cycle, incorporating large motions by four loops that surround the active site.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylglucosaminidase / metabolism*
  • Biocatalysis
  • Crystallography, X-Ray
  • Models, Molecular
  • Peptidoglycan / biosynthesis*
  • Peptidoglycan / chemistry
  • Pseudomonas aeruginosa / enzymology*

Substances

  • Peptidoglycan
  • Acetylglucosaminidase