Differential proteomic analysis of respiratory samples from patients suffering from influenza

Virusdisease. 2016 Sep;27(3):226-233. doi: 10.1007/s13337-016-0332-x. Epub 2016 Aug 12.

Abstract

The exact molecular pathways involved in the pathogenesis of influenza are yet unclear. In the present study we investigated the upper respiratory proteome in influenza patients. 200 nasal and throat swab samples were collected from patients suffering from acute respiratory illness. These samples were confirmed for influenza pandemic A/H1N1/2009 and influenza type B using qRT-PCR. 10 similar swabs were collected from healthy individuals and were used as controls. Proteins were extracted from the cell pellets and were subjected to 2-D gel electrophoresis. The differentially expressed proteins were identified using MALDI-TOF. Identified proteins were classified into different functional groups based on functions reported in the databases. 25 % of these proteins were involved in cytoskeletal formation, whereas 14 % were involved in signal transduction. Proteins involved in anti-viral responses, Ca-signaling, transport, and tumor suppression constituted 10 % each, where as 5 % of proteins each belong to Nicotinic acetylcholine receptor, Protein Synthesis and anti-bacterial proteins. 10 % of the proteins have not been described previously. This is the first report on respiratory proteome profile in Influenza patients. The study emphasizes the role of such profiling studies using multiple platforms for bio-marker discoveries, especially non-invasive diagnostic marker in Influenza and other infectious diseases.

Keywords: 2-D gel electrophoresis; Differential proteome; Influenza type B; Mass spectrometry; Pandemic influenza A/H1N1/2009.