A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry

PLoS Pathog. 2017 May 2;13(5):e1006308. doi: 10.1371/journal.ppat.1006308. eCollection 2017 May.

Abstract

Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei.

MeSH terms

  • Biological Transport
  • Capsid Proteins / genetics
  • Capsid Proteins / metabolism*
  • Cell Nucleus / metabolism
  • Cell Nucleus / virology
  • Chromatin / genetics
  • Chromosomes / genetics
  • DNA, Viral / genetics
  • DNA, Viral / metabolism
  • Genes, Reporter
  • Genome, Viral / genetics*
  • Human papillomavirus 16 / genetics*
  • Human papillomavirus 16 / physiology
  • Humans
  • Intracellular Membranes / metabolism
  • Intracellular Membranes / virology
  • Mitosis*
  • Mutation
  • Oncogene Proteins, Viral / genetics
  • Oncogene Proteins, Viral / metabolism*
  • Virion

Substances

  • Capsid Proteins
  • Chromatin
  • DNA, Viral
  • L2 protein, Human papillomavirus type 16
  • Oncogene Proteins, Viral