Molecular diagnosis of familial hypercholesterolaemia

Curr Opin Lipidol. 2017 Aug;28(4):313-320. doi: 10.1097/MOL.0000000000000430.

Abstract

Purpose of review: Familial hypercholesterolaemia is a hereditary disorder of lipoprotein metabolism which causes a lifelong increase in LDL-C levels resulting in premature coronary heart disease. The present review looks at some of the recent literature on how molecular methods can be used to assist in the definitive diagnosis of familial hypercholesterolaemia in a range of patient groups.

Recent findings: Several recent studies have shown that the prevalence of clinical familial hypercholesterolaemia is higher than previously thought at 1/200 to 1/300, and that 2-5% of patients presenting with early myocardial infarction can be found to have a familial hypercholesterolaemia mutation. The present review then examines different approaches to molecular testing for familial hypercholesterolaemia including point mutation panels versus next-generation sequencing gene panels, and the range of genes tested by some of those panels. Finally, we review the recent evidence for polygenic hypercholesterolaemia within clinically defined familial hypercholesterolaemia patient populations.

Summary: To identify patients with familial hypercholesterolaemia within clinically selected patient groups efficiently, a clinical scoring system should be combined with a molecular testing approach for mutations and for polygenic LDL-C single-nucleotide polymorphisms. Alternatively, a population screening methodology may be appropriate, using mutation testing at an early age before significant atherosclerosis has begun. The precise molecular testing method chosen may depend on the clinical presentation of the patient, and/or the population from which they arise.

Publication types

  • Review

MeSH terms

  • High-Throughput Nucleotide Sequencing
  • Humans
  • Hyperlipoproteinemia Type II / diagnosis*
  • Hyperlipoproteinemia Type II / genetics
  • Molecular Diagnostic Techniques / methods*
  • Point Mutation