Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme

Nat Commun. 2017 May 2:8:15075. doi: 10.1038/ncomms15075.

Abstract

Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Archaeal Proteins / chemistry*
  • Archaeal Proteins / genetics
  • Archaeal Proteins / metabolism
  • Binding Sites
  • Cross-Linking Reagents / chemistry
  • Crystallography, X-Ray
  • DNA Replication
  • DNA, Archaeal / chemistry*
  • DNA, Archaeal / genetics
  • DNA, Archaeal / metabolism
  • DNA-Directed DNA Polymerase / chemistry*
  • DNA-Directed DNA Polymerase / genetics
  • DNA-Directed DNA Polymerase / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Holoenzymes / chemistry*
  • Holoenzymes / genetics
  • Holoenzymes / metabolism
  • Kinetics
  • Models, Molecular
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Interaction Domains and Motifs
  • Protein Multimerization
  • Protein Subunits / chemistry*
  • Protein Subunits / genetics
  • Protein Subunits / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Succinimides / chemistry
  • Sulfolobus solfataricus / chemistry*
  • Sulfolobus solfataricus / enzymology
  • Thermococcus / chemistry
  • Thermococcus / enzymology
  • Thermodynamics

Substances

  • Archaeal Proteins
  • Cross-Linking Reagents
  • DNA, Archaeal
  • Holoenzymes
  • Protein Subunits
  • Recombinant Proteins
  • Succinimides
  • bis(sulfosuccinimidyl)suberate
  • DNA-Directed DNA Polymerase