Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis)

J Agric Food Chem. 2017 May 24;65(20):4223-4236. doi: 10.1021/acs.jafc.7b00922. Epub 2017 May 10.

Abstract

Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.

Keywords: embryogenesis; fatty acid desaturase; glycolysis; lipid biosynthesis; unsaturated fatty acids.

MeSH terms

  • Carya / embryology
  • Carya / genetics*
  • Carya / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation, Developmental*
  • Gene Expression Regulation, Plant
  • Lipids / biosynthesis*
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism

Substances

  • Lipids
  • Plant Proteins