Evolutionary Aspects of Macrophages Polarization

Results Probl Cell Differ. 2017:62:3-22. doi: 10.1007/978-3-319-54090-0_1.

Abstract

Macrophages constitute a heterogeneous population of myeloid cells that are essential for maintaining homeostasis and as a first line of innate responders controlling and organizing host defenses against pathogens. Monocyte-macrophage lineage cells are among the most functionally diverse and plastic cells of the immune system. They undergo specific activation into functionally distinct phenotypes in response to immune signals and microbial products. In mammals, macrophage functional heterogeneity is defined by two activation states, M1 and M2, which represent two polar ends of a continuum exhibiting pro-inflammatory and tissue repair activities, respectively. While the ancient evolutionary origin of macrophages as phagocytic defenders is well established, the evolutionary roots of the specialized division of macrophages into subsets with polarized activation phenotypes is less well defined. Accordingly, this chapter focuses on recent advances in the understanding of the evolution of macrophage polarization and functional heterogeneity with a focus on ectothermic vertebrates.

Keywords: Amphibians; Monocytic lineage; Phagocytic; Vertebrates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Lineage
  • Humans
  • Macrophage Activation / physiology*
  • Macrophages / physiology*