Inverse Magnetoresistance in Polymer Spin Valves

ACS Appl Mater Interfaces. 2017 May 10;9(18):15644-15651. doi: 10.1021/acsami.7b02804. Epub 2017 Apr 28.

Abstract

In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La2/3Sr1/3MnO3 (LSMO)/P3HT/AlOx/Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlOx/Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

Keywords: inverse magnetoresistance; organic spin valve; polymers; spinterface; spintronics.