The inflammatory cytokine IL-22 promotes murine gliomas via proliferation

Exp Ther Med. 2017 Mar;13(3):1087-1092. doi: 10.3892/etm.2017.4059. Epub 2017 Jan 18.

Abstract

Interleukin (IL)-22 is newly identified proinflammatory cytokine involved in the T helper (Th)17 and Th22 response. However, the possible role of IL-22 in glioma remains uncertain. The results of the present study demonstrated higher expression levels of IL-22 and the receptor IL-22BP in the brain of GL261 glioma-inoculation mice, suggesting the regulatory role of IL-22 in glioma. Injection of IL-22 increased the severity of glioma in vivo and higher expression levels of IL-6, IL-1β and tumor necrosis factor (TNF)-α were detected in the brain using ELISA following IL-22 injection. To elucidate the mechanism underlying the effects of IL-22, the present study aimed firstly to determine the expression levels of IL-22 receptor in a glioma cell line via reverse transcription quantitative polymerase chain reaction. IL-22 treatment significantly increased the expression levels of signal transducer and activator of transcription (STAT)3 and the mRNA expression levels of STAT6 compared with the vehicle control. These results suggested that IL-22 may activate the Janus kinase (JAK)/STAT signaling pathway in glioma. Furthermore, IL-22 positively regulated the proliferation of glioma, consistent with its role in vivo. Conversely, IL-22-deficient mice exhibited prolonged survival compared with wild-type (WT) mice, and the expression levels of inflammatory cytokines were decreased in the brain of IL-22 knock-out (KO) mice compared with WT mice. Concordant with these results, it was observed that IL-22-neutralising antibody was able to increase the survival of mice with glioma and attenuate the disease by significantly reducing the cytokine levels in the brain. In conclusion, the results of the present study demonstrated that expression levels of IL-22 in the brain of mice with glioma may enhance symptoms due to the increased cytokine production of IL-6, IL-1β and TNF-α; this is consistent with IL-6/JAK/STAT signalling activation in vitro. Decreasing the expression levels of IL-22, achieved either with IL-22-KO mice or IL-22-neutralising antibody demonstrated protective effects on glioma development. Therefore, IL-22 may serve as a potential therapeutic target for glioma.

Keywords: gliomas; interleukin-22; proliferation.