Characterization of a Dual Rac/Cdc42 Inhibitor MBQ-167 in Metastatic Cancer

Mol Cancer Ther. 2017 May;16(5):805-818. doi: 10.1158/1535-7163.MCT-16-0442.

Abstract

The Rho GTPases Rac (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42 homolog) regulate cell functions governing cancer malignancy, including cell polarity, migration, and cell-cycle progression. Accordingly, our recently developed Rac inhibitor EHop-016 (IC50, 1,100 nmol/L) inhibits cancer cell migration and viability and reduces tumor growth, metastasis, and angiogenesis in vivo Herein, we describe MBQ-167, which inhibits Rac and Cdc42 with IC50 values of 103 and 78 nmol/L, respectively, in metastatic breast cancer cells. Consequently, MBQ-167 significantly decreases Rac and Cdc42 downstream effector p21-activated kinase (PAK) signaling and the activity of STAT3, without affecting Rho, MAPK, or Akt activities. MBQ-167 also inhibits breast cancer cell migration, viability, and mammosphere formation. Moreover, MBQ-167 affects cancer cells that have undergone epithelial-to-mesenchymal transition by a loss of cell polarity and inhibition of cell surface actin-based extensions to ultimately result in detachment from the substratum. Prolonged incubation (120 hours) in MBQ-167 decreases metastatic cancer cell viability with a GI50 of approximately 130 nmol/L, without affecting noncancer mammary epithelial cells. The loss in cancer cell viability is due to MBQ-167-mediated G2-M cell-cycle arrest and subsequent apoptosis, especially of the detached cells. In vivo, MBQ-167 inhibits mammary tumor growth and metastasis in immunocompromised mice by approximately 90%. In conclusion, MBQ-167 is 10× more potent than other currently available Rac/Cdc42 inhibitors and has the potential to be developed as an anticancer drug, as well as a dual inhibitory probe for the study of Rac and Cdc42. Mol Cancer Ther; 16(5); 805-18. ©2017 AACR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / pathology
  • Carbazoles / administration & dosage
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Female
  • Humans
  • Mice
  • Neoplasm Metastasis
  • Neovascularization, Pathologic / drug therapy*
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / pathology
  • Pyrimidines / administration & dosage
  • Signal Transduction / drug effects
  • cdc42 GTP-Binding Protein / antagonists & inhibitors*
  • cdc42 GTP-Binding Protein / genetics*
  • rac1 GTP-Binding Protein / antagonists & inhibitors
  • rac1 GTP-Binding Protein / genetics*

Substances

  • Antineoplastic Agents
  • Carbazoles
  • N4-(9-ethyl-9H-carbazol-3-yl)-N2-(3-morpholin-4-ylpropyl)-pyrimidine-2,4-diamine
  • Pyrimidines
  • cdc42 GTP-Binding Protein
  • rac1 GTP-Binding Protein