Infrared, Raman and Magnetic Resonance Spectroscopic Study of SiO2:C Nanopowders

Nanoscale Res Lett. 2017 Dec;12(1):292. doi: 10.1186/s11671-017-2057-1. Epub 2017 Apr 24.

Abstract

Optical and magnetic properties of SiO2:C nanopowders obtained by chemical and thermal modification of fumed silica were studied by Fourier transform infrared spectroscopy, Raman, continuous wave (CW) electron paramagnetic resonance (EPR), echo-detected EPR and pulsed electron nuclear double resonance (ENDOR) spectroscopy. Two overlapping signals of Lorentzian lineshape were detected in CW EPR spectra of the initial SiO2:C. The EPR signal at g = 2.0055(3) is due to the silicon dangling bonds, which vanishes after thermal annealing, and the second EPR signal at g = 2.0033(3) was attributed to the carbon-related defect (CRD). The annealing of the SiO2:C samples gives rise to the increase of the CRD spin density and shift to the higher g-values due to the appearance of the oxygen in the vicinity of the CRD. Based on the temperature-dependent behavior of the CRD EPR signal intensity, linewidth and resonance field position we have attributed it to the spin system with non-localized electrons hopping between neighboring carbon dangling bonds, which undergo a strong exchange interaction with a localized spin system of carbon nanodots. The observed motional narrowing of the CRD EPR signal in the temperature interval from 4 to 20 K indicates that electrons are mobile at 4 K which can be explained by a quantum character of the conductivity in the vicinity of the carbon layer. The electrons trapped in quantum wells move from one carbon nanodot to another by hopping process through the energy barrier. The fact that echo-detected EPR signal at g = 2.0035(3) was observed in SiO2:C sample annealed at T ann ≥ 700 °C serves as evidence that non-localized electrons coexist with localized electrons that have the superhyperfine interaction with surrounding 13C and 29Si nuclei located at the SiO2:C interface. The presence of the superhyperfine interaction of CRD with 1H nuclei indicates the existence of hydrogenated regions in SiO2:C sample.

Keywords: Carbon nanodots; Carbon-related defects; Carbosil; EPR; Raman spectroscopy.