Multivalent Peptide-Nanoparticle Conjugates for Influenza-Virus Inhibition

Angew Chem Int Ed Engl. 2017 May 15;56(21):5931-5936. doi: 10.1002/anie.201702005. Epub 2017 Apr 26.

Abstract

To inhibit binding of the influenza A virus to the host cell glycocalyx, we generate multivalent peptide-polymer nanoparticles binding with nanomolar affinity to the virus via its spike protein hemagglutinin. The chosen dendritic polyglycerol scaffolds are highly biocompatible and well suited for a multivalent presentation. We could demonstrate in vitro that by increasing the size of the polymer scaffold and adjusting the peptide density, viral infection is drastically reduced. Such a peptide-polymer conjugate qualified also in an in vivo infection scenario. With this study we introduce the first non-carbohydrate-based, covalently linked, multivalent virus inhibitor in the nano- to picomolar range by ensuring low peptide-ligand density on a larger dendritic scaffold.

Keywords: antiviral agents; in vivo studies; influenza virus; multivalency; peptides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Erythrocytes / drug effects
  • Humans
  • Influenza, Human* / drug therapy
  • Molecular Structure
  • Nanoparticles / chemistry*
  • Peptides / chemistry*

Substances

  • Antiviral Agents
  • Peptides