High-Performance Respiration-Based Biocell Using Artificial Nanochannel Regulation

Adv Mater. 2017 Jun;29(24). doi: 10.1002/adma.201606871. Epub 2017 Apr 24.

Abstract

Based on electron and proton transfer events occurring in biological respiration, a mitochondria-based biocell is constructed by combining with artificial nanochannels. In this biocell, mitochondria transfer electrons to the working electrode and pump protons into the electrolyte through the tricarboxylic acid cycle. The nanochannels provide passages for protons to transport along the transmembrane concentration gradient to consume electrons on the counter electrode, forming a continuous and stable current. Furthermore, the proton transmembrane transport behavior could be modulated by regulating the permeability area and surface charge of nanochannels. A high-performance biocell is obtained when equipped with the optimized nanochannels, which produces a current of ≈3.1 mA cm-2 , a maximum power of ≈0.91 mW cm-2 , and a lifetime over 60 h. This respiratory-based biocell shows great potential for the efficient utilization of bioelectricity.

Keywords: biocells; ion transport; mitochondria; nanochannels; respiration.