Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution

Sci Adv. 2017 Mar 31;3(3):e1602215. doi: 10.1126/sciadv.1602215. eCollection 2017 Mar.

Abstract

We describe the spontaneous formation of composite chalcogenide materials that consist of two-dimensional (2D) materials dispersed in bulk and their unusual charge transport properties for application in hydrogen evolution reactions (HERs). When MoS2 as a representative 2D material is deposited on transition metals (such as Cu) in a controlled manner, the sulfidation reactions also occur with the metal. This process results in remarkably unique structures, that is, bulk layered heterojunctions (BLHJs) of Cu-Mo-S that contain MoS2 flakes inside, which are uniformly dispersed in the Cu2S matrix. The resulting structures were expected to induce asymmetric charge transfer via layered frameworks and tested as electrocatalysts for HERs. Upon suitable thermal treatments, the BLHJ surfaces exhibited the efficient HER performance of approximately 10 mA/cm2 at a potential of -0.1 V versus a reversible hydrogen electrode. The Tafel slope was approximately 30 to 40 mV per decade. The present strategy was further generalized by demonstrating the formation of BLHJs on other transition metals, such as Ni. The resulting BLHJs of Ni-Mo-S also showed the remarkable HER performance and the stable operation over 10 days without using Pt counter electrodes by eliminating any possible issues on the Pt contamination.

Keywords: Cu-Mo-S; Electrocatalyst; Hydrogen Evolution Reaction; bulk layered heterojuntion; composite chalcogenide materials; sequential gas phase deposition.