Exposure to seawater increases intestinal motility in euryhaline rainbow trout (Oncorhynchus mykiss)

J Exp Biol. 2017 Jul 1;220(Pt 13):2397-2408. doi: 10.1242/jeb.156000. Epub 2017 Apr 21.

Abstract

Upon exposure to seawater, euryhaline teleosts need to imbibe and desalinate seawater to allow for intestinal ion and water absorption, as this is essential for maintaining osmotic homeostasis. Despite the potential benefits of increased mixing and transport of imbibed water for increasing the efficiency of absorptive processes, the effect of water salinity on intestinal motility in teleosts remains unexplored. By qualitatively and quantitatively describing in vivo intestinal motility of euryhaline rainbow trout (Oncorhynchus mykiss), this study demonstrates that, in freshwater, the most common motility pattern consisted of clusters of rhythmic, posteriorly propagating contractions that lasted ∼1-2 min followed by a period of quiescence lasting ∼4-5 min. This pattern closely resembles mammalian migrating motor complexes (MMCs). Following a transition to seawater, imbibed seawater resulted in a significant distension of the intestine and the frequency of MMCs increased twofold to threefold with a concomitant reduction in the periods of quiescence. The increased frequency of MMCs was also accompanied by ripple-type contractions occurring every 12-60 s. These findings demonstrate that intestinal contractile activity of euryhaline teleosts is dramatically increased upon exposure to seawater, which is likely part of the overall response for maintaining osmotic homeostasis as increased drinking and mechanical perturbation of fluids is necessary to optimise intestinal ion and water absorption. Finally, the temporal response of intestinal motility in rainbow trout transitioning from freshwater to seawater coincides with previously documented physiological modifications associated with osmoregulation and may provide further insight into the underlying reasons shaping the migration patterns of salmonids.

Keywords: Enteric electrical activity; Fish; Osmoregulation; Salinity; Spatio-temporal maps; Video recordings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Female
  • Fresh Water
  • Gastrointestinal Motility / drug effects*
  • Homeostasis
  • Male
  • Oncorhynchus mykiss / physiology*
  • Osmoregulation
  • Salinity*
  • Seawater*