Refractive index and extinction coefficient of NH2CH = NH2PbI3 perovskite photovoltaic material

J Phys Condens Matter. 2017 Jun 21;29(24):245702. doi: 10.1088/1361-648X/aa6e6c. Epub 2017 Apr 21.

Abstract

Very recently, the NH2CH = NH2PbI3 (FAPbI3) perovskite material has attracted considerable attention in fabricating solar cells (SCs). For a photovoltaic material, its refractive index and extinction coefficient, n(λ) and k(λ), as functions of λ, are important to study its optical properties and to estimate the power conversion efficiency potential for the SCs made of it. As far as we know, to date there has been no reports of n(λ) and k(λ) for FAPbI3 material. In this article, with spectroscopic ellipsometry (SE) measurements, the n(λ) and k(λ), as well as E g = 1.45 eV for FAPbI3, are acquired. The fast deposition crystallization (FDC) procedure combined with the slowed down annealing (SDA) process is applied to fabricate smooth and uniform FAPbI3 film on quartz substrate. Several kinds of organic solvents were tried as the second solvent in the FDC procedure, and it is found that when petroleum ether is used, the smallest surface roughness and good FAPbI3 material purity of the FAPbI3 film can be acquired. The k(λ) results for FAPbI3 obtained by SE, calculated from the n(λ) using the Kramers-Kronig relationship, by absorbance, and by first-principles calculations, are compared. The n(λ) and k(λ) for FAPbI3 are also compared with those for CH3NH3PbI3, GaAs and c-Si.