Sonochemical synthesis, characterization, and effects of temperature, power ultrasound and reaction time on the morphological properties of two new nanostructured mercury(II) coordination supramolecule compounds

Ultrason Sonochem. 2017 Jul:37:382-393. doi: 10.1016/j.ultsonch.2017.01.021. Epub 2017 Jan 21.

Abstract

Two new mercury(II) coordination supramolecular compounds (CSCs) (1D and 0D), [Hg(L)(I)2]n (1) and [Hg2(L')2(SCN)2]·2H2O (2) (L=2-amino-4-methylpyridine and L'=2,6-pyridinedicarboxlic acid), have been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by field emission scanning electron microscope (FESEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on compounds 1 and 2 show that Hg2+ ions are 4-coordinated and 5-coordinated, respectively. Topological analysis shows that the compound 1 and 2 have 2C1, sql net. The thermal stability of compounds 1 and 2 in bulk and nano-size has been studied by thermal gravimetric (TG), differential thermal analyses (DTA) for 1 and differential scanning calorimetry (DSC) for 2, respectively. Also, by changing counter ions were obtained various structures 1 and 2 (1D and 0D, respectively). The role of different parameters like power of ultrasound irradiation, reaction time and temperature on the growth and morphology of the nano-structures are studied. Results suggest that increasing power ultrasound irradiation and temperature together with reducing reaction time and concentration of initial reagents leads to a decrease in particle size.

Keywords: Coordination supramolecular; Morphology; Sonochemical process; Ultrasound irradiation.